Urban forests provide important ecosystem services, such as urban air quality improvement by removing pollutants. While robust evidence exists that plant physiology, abundance, and distribution within cities are basic parameters affecting the magnitude and efficiency of air pollution removal, little is known about effects of plant diversity on the stability of this ecosystem service. Here, by means of a spatial analysis integrating system dynamic modeling and geostatistics, we assessed the effects of tree diversity on the removal of tropospheric ozone (O-3) in Rome, Italy, in two years (2003 and 2004) that were very different for climatic conditions and ozone levels. Different tree functional groups showed complementary uptake patterns, related to tree physiology and phenology, maintaining a stable community function across different climatic conditions. Our results, although depending on the city-specific conditions of the studied area, suggest a higher function stability at increasing diversity levels in urban ecosystems. In Rome, such ecosystem services, based on published unitary costs of externalities and of mortality associated with O-3, can be prudently valued to roughly US$2 and $3 million/year, respectively.

Urban ecosystem services: Tree diversity and stability of tropospheric ozone removal

INCERTI, Guido;
2012-01-01

Abstract

Urban forests provide important ecosystem services, such as urban air quality improvement by removing pollutants. While robust evidence exists that plant physiology, abundance, and distribution within cities are basic parameters affecting the magnitude and efficiency of air pollution removal, little is known about effects of plant diversity on the stability of this ecosystem service. Here, by means of a spatial analysis integrating system dynamic modeling and geostatistics, we assessed the effects of tree diversity on the removal of tropospheric ozone (O-3) in Rome, Italy, in two years (2003 and 2004) that were very different for climatic conditions and ozone levels. Different tree functional groups showed complementary uptake patterns, related to tree physiology and phenology, maintaining a stable community function across different climatic conditions. Our results, although depending on the city-specific conditions of the studied area, suggest a higher function stability at increasing diversity levels in urban ecosystems. In Rome, such ecosystem services, based on published unitary costs of externalities and of mortality associated with O-3, can be prudently valued to roughly US$2 and $3 million/year, respectively.
File in questo prodotto:
File Dimensione Formato  
Manes_et_al-2012-Ecological_Applications.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 4.84 MB
Formato Adobe PDF
4.84 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1104386
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 125
  • ???jsp.display-item.citation.isi??? 109
social impact