When hovering over sandy terrain, the rotor of helicopters generates a downward jet that induces resuspension of dust and debris. We investigate the mechanisms that govern particle resuspension in such flow using an Eulerian-Lagrangian approach based on large-eddy simulation of turbulence. The wake generated by the helicopter is modelled as a vertical impinging jet, to which a sequence of periodically forced azimuthal vortices is superposed. The resulting flow field provides a unique range of flow scales with which the particles can interact. Downstream of the impingement region, layers of negative azimuthal vorticity (secondary vortices) form on the upwash side of the primary azimuthal (large-scale) vortices. These layers then detach from the surface together with the near-wall (small-scale) vortices populating the wall-jet region. We show how the dynamics of sediments is governed by its interaction with these structures. After initial lift off from the impingement surface, particles accumulate in regions where near-wall vortices roll around the impinging azimuthal vortex, forming rib-like structures that either propel particles away from the azimuthal vortex or entrap them in the shear layer between the azimuthal and secondary vortices. We demonstrate that these trapped particles are more likely to reach the outer flow region and generate a persistent cloud of airborne particles. We also show that, in a time-averaged sense, particle resuspension and deposition fluxes balance each other near the impingement surface

Particle resuspension by a periodically forced impinging jet

SOLIGO, GIOVANNI;MARCHIOLI, Cristian;SOLDATI, Alfredo;
2017-01-01

Abstract

When hovering over sandy terrain, the rotor of helicopters generates a downward jet that induces resuspension of dust and debris. We investigate the mechanisms that govern particle resuspension in such flow using an Eulerian-Lagrangian approach based on large-eddy simulation of turbulence. The wake generated by the helicopter is modelled as a vertical impinging jet, to which a sequence of periodically forced azimuthal vortices is superposed. The resulting flow field provides a unique range of flow scales with which the particles can interact. Downstream of the impingement region, layers of negative azimuthal vorticity (secondary vortices) form on the upwash side of the primary azimuthal (large-scale) vortices. These layers then detach from the surface together with the near-wall (small-scale) vortices populating the wall-jet region. We show how the dynamics of sediments is governed by its interaction with these structures. After initial lift off from the impingement surface, particles accumulate in regions where near-wall vortices roll around the impinging azimuthal vortex, forming rib-like structures that either propel particles away from the azimuthal vortex or entrap them in the shear layer between the azimuthal and secondary vortices. We demonstrate that these trapped particles are more likely to reach the outer flow region and generate a persistent cloud of airborne particles. We also show that, in a time-averaged sense, particle resuspension and deposition fluxes balance each other near the impingement surface
File in questo prodotto:
File Dimensione Formato  
JFM2017.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 7.89 MB
Formato Adobe PDF
7.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1108705
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
social impact