We prove constructive estimates for elastic plates modelled by the Reissner-Mindlin theory and made by general anisotropic material. Namely, we obtain a generalized Korn inequality which allows to derive quantitative stability and global H^2 regularity for the Neumann problem. Moreover, in case of isotropic material, we derive an interior three spheres inequality with optimal exponent from which the strong unique continuation property follows.

A generalized Korn inequality and strong unique continuation for the Reissner–Mindlin plate system

MORASSI, Antonino;
2017-01-01

Abstract

We prove constructive estimates for elastic plates modelled by the Reissner-Mindlin theory and made by general anisotropic material. Namely, we obtain a generalized Korn inequality which allows to derive quantitative stability and global H^2 regularity for the Neumann problem. Moreover, in case of isotropic material, we derive an interior three spheres inequality with optimal exponent from which the strong unique continuation property follows.
File in questo prodotto:
File Dimensione Formato  
MRV_JDE_263_2017_811-850.pdf

non disponibili

Descrizione: File di testo completo dell'articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 348.22 kB
Formato Adobe PDF
348.22 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1109108
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact