We prove constructive estimates for elastic plates modelled by the Reissner-Mindlin theory and made by general anisotropic material. Namely, we obtain a generalized Korn inequality which allows to derive quantitative stability and global H^2 regularity for the Neumann problem. Moreover, in case of isotropic material, we derive an interior three spheres inequality with optimal exponent from which the strong unique continuation property follows.
A generalized Korn inequality and strong unique continuation for the Reissner–Mindlin plate system
MORASSI, Antonino;
2017-01-01
Abstract
We prove constructive estimates for elastic plates modelled by the Reissner-Mindlin theory and made by general anisotropic material. Namely, we obtain a generalized Korn inequality which allows to derive quantitative stability and global H^2 regularity for the Neumann problem. Moreover, in case of isotropic material, we derive an interior three spheres inequality with optimal exponent from which the strong unique continuation property follows.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
MRV_JDE_263_2017_811-850.pdf
non disponibili
Descrizione: File di testo completo dell'articolo
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
348.22 kB
Formato
Adobe PDF
|
348.22 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.