In this paper the axial vibrational behaviour of nanorods with an attached point-mass is studied, using the modified strain energy theory. The natural frequencies of the nanorod with the concentrated mass are obtained for different boundary conditions. The effects of the concentrated mass intensity, mass location, as well as the value of scale parameters have been analysed. For the case of small intensity of the concentrated mass, the natural frequencies of the nanorod can be estimated using a first order perturbative solution. These approximate results are compared with those corresponding to the exact solution. For this case, from the properties of the eigenvalue perturbative theory, the identification of single point mass in uniform nanorods (mass intensity and position) is addressed. The results obtained encourage the use of axial vibrations of nanorods as a very precise sensing technique.

Resonator-based detection in nanorods

MORASSI, Antonino;
2017-01-01

Abstract

In this paper the axial vibrational behaviour of nanorods with an attached point-mass is studied, using the modified strain energy theory. The natural frequencies of the nanorod with the concentrated mass are obtained for different boundary conditions. The effects of the concentrated mass intensity, mass location, as well as the value of scale parameters have been analysed. For the case of small intensity of the concentrated mass, the natural frequencies of the nanorod can be estimated using a first order perturbative solution. These approximate results are compared with those corresponding to the exact solution. For this case, from the properties of the eigenvalue perturbative theory, the identification of single point mass in uniform nanorods (mass intensity and position) is addressed. The results obtained encourage the use of axial vibrations of nanorods as a very precise sensing technique.
File in questo prodotto:
File Dimensione Formato  
MFSZL_MSSP_93_2017_645-660.pdf

non disponibili

Descrizione: File di testo completo dell'articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 602.11 kB
Formato Adobe PDF
602.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1109110
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 28
social impact