Magnetic diagnostics are essential for the operation and understanding of a magnetic confinement fusion (MCF) device, for example, by providing in real-time, the axisymmetric measurements needed for plasma equilibrium reconstructions or magnetohydrodynamic instabilities control. In this paper, we present a fast and robust implementation on GPU architecture of an accurate algorithm suitable for the computation of synthetic magnetic measurements used both in real time applications and off-line reconstruction procedures. The proposed procedure is first applied to benchmark problems, to validate the compute unified device architecture implementation, and then to cases of practical interests in MCF.
Fast and Efficient Algorithms for Computational Electromagnetics on GPU Architecture
PASSAROTTO, MAURO
2017-01-01
Abstract
Magnetic diagnostics are essential for the operation and understanding of a magnetic confinement fusion (MCF) device, for example, by providing in real-time, the axisymmetric measurements needed for plasma equilibrium reconstructions or magnetohydrodynamic instabilities control. In this paper, we present a fast and robust implementation on GPU architecture of an accurate algorithm suitable for the computation of synthetic magnetic measurements used both in real time applications and off-line reconstruction procedures. The proposed procedure is first applied to benchmark problems, to validate the compute unified device architecture implementation, and then to cases of practical interests in MCF.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.