We study the frequency chirp properties of graphene-on-silicon electro-absorption modulators (EAMs). By experimentally measuring the chirp of a 100 µm long single layer graphene EAM, we show that the optoelectronic properties of graphene induce a large positive linear chirp on the optical signal generated by the modulator, giving rise to a maximum shift of the instantaneous frequency up to 1.8 GHz. We exploit this peculiar feature for chromatic-dispersion compensation in fiber optic transmission thanks to the pulse temporal lensing effect. In particular, we show dispersion compensation in a 10Gb/s transmission experiment on standard single mode fiber with temporal focusing distance (0-dB optical-signal-to-noise ratio penalty) of 60 km, and also demonstrate 100 km transmission with a bit error rate largely lower than the conventional Reed-Solomon forward error correction threshold of 10−3.
Chirp management in silicon-graphene electro absorption modulators
M. Midrio;
2017-01-01
Abstract
We study the frequency chirp properties of graphene-on-silicon electro-absorption modulators (EAMs). By experimentally measuring the chirp of a 100 µm long single layer graphene EAM, we show that the optoelectronic properties of graphene induce a large positive linear chirp on the optical signal generated by the modulator, giving rise to a maximum shift of the instantaneous frequency up to 1.8 GHz. We exploit this peculiar feature for chromatic-dispersion compensation in fiber optic transmission thanks to the pulse temporal lensing effect. In particular, we show dispersion compensation in a 10Gb/s transmission experiment on standard single mode fiber with temporal focusing distance (0-dB optical-signal-to-noise ratio penalty) of 60 km, and also demonstrate 100 km transmission with a bit error rate largely lower than the conventional Reed-Solomon forward error correction threshold of 10−3.File | Dimensione | Formato | |
---|---|---|---|
(77) SOR17CHI.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
4.25 MB
Formato
Adobe PDF
|
4.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.