We deal with the Neumann boundary value problem u'' + ( λa^+(t) - μa^-(t) ) g(u) = 0, 0 < u(t) < 1, ∀ t∈[0,T], u'(0) = u'(T) = 0, where the weight term has two positive humps separated by a negative one and g: [0,1]→ℝ is a continuous function such that g(0)=g(1)=0, g(s) > 0 for 0<s<1 and lim_{s→0^+} g(s)/s = 0. We prove the existence of three solutions when λ and μ are positive and sufficiently large.
Three positive solutions to an indefinite Neumann problem: a shooting method
Feltrin, Guglielmo;Sovrano, Elisa
2018-01-01
Abstract
We deal with the Neumann boundary value problem u'' + ( λa^+(t) - μa^-(t) ) g(u) = 0, 0 < u(t) < 1, ∀ t∈[0,T], u'(0) = u'(T) = 0, where the weight term has two positive humps separated by a negative one and g: [0,1]→ℝ is a continuous function such that g(0)=g(1)=0, g(s) > 0 for 0File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Feltrin_Sovrano_NA_2018.pdf
non disponibili
Descrizione: Articolo pubblicato
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.