We deal with the Neumann boundary value problem u'' + ( λa^+(t) - μa^-(t) ) g(u) = 0, 0 < u(t) < 1, ∀ t∈[0,T], u'(0) = u'(T) = 0, where the weight term has two positive humps separated by a negative one and g: [0,1]→ℝ is a continuous function such that g(0)=g(1)=0, g(s) > 0 for 0<s<1 and lim_{s→0^+} g(s)/s = 0. We prove the existence of three solutions when λ and μ are positive and sufficiently large.

Three positive solutions to an indefinite Neumann problem: a shooting method

Feltrin, Guglielmo;Sovrano, Elisa
2018-01-01

Abstract

We deal with the Neumann boundary value problem u'' + ( λa^+(t) - μa^-(t) ) g(u) = 0, 0 < u(t) < 1, ∀ t∈[0,T], u'(0) = u'(T) = 0, where the weight term has two positive humps separated by a negative one and g: [0,1]→ℝ is a continuous function such that g(0)=g(1)=0, g(s) > 0 for 0
File in questo prodotto:
File Dimensione Formato  
Feltrin_Sovrano_NA_2018.pdf

non disponibili

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1122129
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 18
social impact