Large-area multi-anode Silicon Drift Detectors (SDDs) have X-ray imaging and spectroscopic characteristics that make them extremely attractive in the perspective of their applications to the field of space astrophysics. We describe here the imaging performance of such a detector, originally developed for particle tracking in the ALICE experiment at LHC, as derived by laboratory measurements and Monte Carlo simulations. Despite an anode pitch of 294 mu m, we measured a position resolution as high as similar to 20 mu m by charge weighting in the anode direction, for photon energies in the range 2-10 key. These results are comparable to those obtained with the same detectors in particle tracking. Notwithstanding the 1-D nature of the devices, as far as their read-out is concerned, we envisaged an algorithm that exploits the charge diffusion to reconstruct the position of the photon absorption point also along the drift direction (that is, the one formally not position-sensitive). With the current set-up, the position resolution was measured as similar to 3-5 mm in the same energy range as above. Such 2-D imaging capability in a 1-D detector, although asymmetric, is highly useful in space applications, where the power and the complexity requested by a 2-D read-out system is sometimes unaffordable. (C) 2011 Elsevier B.V. All rights reserved.

Imaging performance of a large-area Silicon Drift Detector for X-ray astronomy

Vacchi A.;
2011-01-01

Abstract

Large-area multi-anode Silicon Drift Detectors (SDDs) have X-ray imaging and spectroscopic characteristics that make them extremely attractive in the perspective of their applications to the field of space astrophysics. We describe here the imaging performance of such a detector, originally developed for particle tracking in the ALICE experiment at LHC, as derived by laboratory measurements and Monte Carlo simulations. Despite an anode pitch of 294 mu m, we measured a position resolution as high as similar to 20 mu m by charge weighting in the anode direction, for photon energies in the range 2-10 key. These results are comparable to those obtained with the same detectors in particle tracking. Notwithstanding the 1-D nature of the devices, as far as their read-out is concerned, we envisaged an algorithm that exploits the charge diffusion to reconstruct the position of the photon absorption point also along the drift direction (that is, the one formally not position-sensitive). With the current set-up, the position resolution was measured as similar to 3-5 mm in the same energy range as above. Such 2-D imaging capability in a 1-D detector, although asymmetric, is highly useful in space applications, where the power and the complexity requested by a 2-D read-out system is sometimes unaffordable. (C) 2011 Elsevier B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1125081
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 32
social impact