The graph Laplacian, a typical representation of a network, is an important matrix that can tell us much about the network structure. In particular its eigenpairs (eigenvalues and eigenvectors) incubate precious topological information about the network at hand, including connectivity, partitioning, node distance and centrality. Real networks might be very large in number of nodes; luckily, most real networks are sparse, meaning that the number of edges (binary connections among nodes) are few with respect to the maximum number of possible edges. In this paper we experimentally compare three important algorithms for computation of a few among the smallest eigenpairs of large and sparse matrices: the Implicitly Restarted Lanczos Method, which is the current implementation in the most popular scientific computing environments (MATLAB/R), the Jacobi–Davidson method, and the Deflation Accelerated Conjugate Gradient method. We implemented the algorithms in a uniform programming setting and tested them over diverse real-world networks including biological, technological, information, and social networks.
Computing the smallest eigenpairs of the graph Laplacian
Bozzo, EnricoMembro del Collaboration Group
2018-01-01
Abstract
The graph Laplacian, a typical representation of a network, is an important matrix that can tell us much about the network structure. In particular its eigenpairs (eigenvalues and eigenvectors) incubate precious topological information about the network at hand, including connectivity, partitioning, node distance and centrality. Real networks might be very large in number of nodes; luckily, most real networks are sparse, meaning that the number of edges (binary connections among nodes) are few with respect to the maximum number of possible edges. In this paper we experimentally compare three important algorithms for computation of a few among the smallest eigenpairs of large and sparse matrices: the Implicitly Restarted Lanczos Method, which is the current implementation in the most popular scientific computing environments (MATLAB/R), the Jacobi–Davidson method, and the Deflation Accelerated Conjugate Gradient method. We implemented the algorithms in a uniform programming setting and tested them over diverse real-world networks including biological, technological, information, and social networks.File | Dimensione | Formato | |
---|---|---|---|
semaberga.pdf
non disponibili
Descrizione: Articolo
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
479.33 kB
Formato
Adobe PDF
|
479.33 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.