We study the periodic and the Neumann boundary value problems associated with the second order nonlinear differential equation u'' + c u' + λ a(t) g(u) = 0, where g:[0,+∞[→[0,+∞[ is a sublinear function at infinity having superlinear growth at zero. We prove the existence of two positive solutions when ∫a(t)dt<0 and λ > 0 is sufficiently large. Our approach is based on Mawhin's coincidence degree theory and index computations.

Pairs of positive periodic solutions of nonlinear ODEs with indefinite weight: a topological degree approach for the super-sublinear case

Feltrin, Guglielmo
;
Zanolin, Fabio
2016-01-01

Abstract

We study the periodic and the Neumann boundary value problems associated with the second order nonlinear differential equation u'' + c u' + λ a(t) g(u) = 0, where g:[0,+∞[→[0,+∞[ is a sublinear function at infinity having superlinear growth at zero. We prove the existence of two positive solutions when ∫a(t)dt<0 and λ > 0 is sufficiently large. Our approach is based on Mawhin's coincidence degree theory and index computations.
File in questo prodotto:
File Dimensione Formato  
Boscaggin_Feltrin_Zanolin_PRSE_2016.pdf

non disponibili

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 233.06 kB
Formato Adobe PDF
233.06 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1126654
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 25
social impact