Co-firing of solid biomass in existing large scale coal power plants has been supported in many countries as a short-term means to decrease CO2 emissions and rapidly increase renewable energy shares. However, many countries face challenges guaranteeing sufficient amounts of biomass through reliable domestic biomass supply chains and resort to international supply chains. Within this frame, novel pre-treatment technologies, particularly pelletization and torrefaction, emerged in recent years to facilitate logistics by improving the durability and the energy density of solid biomass. This paper aims to evaluate these pre-treatment technologies from a techno-economic and environmental point of view for two reference coal power plants located in Great Britain and in Italy. Logistics costs and carbon emissions are modelled for both international and domestic biomass supply chains. The impact of pre-treatment technologies on carbon emission avoidance costs is evaluated. It is demonstrated that, for both cases, pre-treatment technologies are hardly viable for domestic supply. On the other hand, pre-treatment technologies are found to render most international bioenergy supply chains competitive with domestic ones, especially if sourcing areas are located in low labour cost countries. In many cases, pre-treatment technologies are found to guarantee similar CO2 equivalent emissions performance for international compared to domestic supply chains.

International vs. domestic bioenergy supply chains for co-firing plants: The role of pre-treatment technologies

Mauro, Caterina
Investigation
;
Chinese, Damiana
Writing – Original Draft Preparation
2018-01-01

Abstract

Co-firing of solid biomass in existing large scale coal power plants has been supported in many countries as a short-term means to decrease CO2 emissions and rapidly increase renewable energy shares. However, many countries face challenges guaranteeing sufficient amounts of biomass through reliable domestic biomass supply chains and resort to international supply chains. Within this frame, novel pre-treatment technologies, particularly pelletization and torrefaction, emerged in recent years to facilitate logistics by improving the durability and the energy density of solid biomass. This paper aims to evaluate these pre-treatment technologies from a techno-economic and environmental point of view for two reference coal power plants located in Great Britain and in Italy. Logistics costs and carbon emissions are modelled for both international and domestic biomass supply chains. The impact of pre-treatment technologies on carbon emission avoidance costs is evaluated. It is demonstrated that, for both cases, pre-treatment technologies are hardly viable for domestic supply. On the other hand, pre-treatment technologies are found to render most international bioenergy supply chains competitive with domestic ones, especially if sourcing areas are located in low labour cost countries. In many cases, pre-treatment technologies are found to guarantee similar CO2 equivalent emissions performance for international compared to domestic supply chains.
File in questo prodotto:
File Dimensione Formato  
RE_RevisedVersion_Unmarked.pdf

Open Access dal 01/05/2019

Descrizione: Articolo completo
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1126965
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact