The Killing-like equation and the inverse Noether theorem arise in connection with the search for first integrals of Lagrangian systems. We generalize the theory to include ``nonlocal'' constants of motion of the form $N_0+int N_1,dt$, and also to nonvariational Lagrangian systems $rac{d}{dt}partial_{dot q}L-partial_qL=Q$. As examples we study nonlocal constants of motion for the Lane-Emden system, for the dissipative Maxwell-Bloch system and for the particle in a homogeneous potential.

Nonlocal and nonvariational extensions of killing-type equations

Gorni, Gianluca;
2018-01-01

Abstract

The Killing-like equation and the inverse Noether theorem arise in connection with the search for first integrals of Lagrangian systems. We generalize the theory to include ``nonlocal'' constants of motion of the form $N_0+int N_1,dt$, and also to nonvariational Lagrangian systems $rac{d}{dt}partial_{dot q}L-partial_qL=Q$. As examples we study nonlocal constants of motion for the Lane-Emden system, for the dissipative Maxwell-Bloch system and for the particle in a homogeneous potential.
File in questo prodotto:
File Dimensione Formato  
2018nonvariationalKilling.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 409.72 kB
Formato Adobe PDF
409.72 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1127676
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact