Novel methods are proposed for dealing with event-tree analysis under imprecise probabilities, where one could measure chance or uncertainty without sharp numerical probabilities and express available evidence as upper and lower previsions (or expectations) of gambles (or bounded real functions). Sets of upper and lower previsions generate a convex set of probability distributions (or measures). Any probability distribution in this convex set should be considered in the event-tree analysis. This article focuses on the calculation of upper and lower bounds of the prevision (or the probability) of some outcome at the bottom of the event-tree. Three cases of given information/judgments on probabilities of outcomes are considered: (1) probabilities conditional to the occurrence of the event at the upper level; (2) total probabilities of occurrences, that is, not conditional to other events; (3) the combination of the previous two cases. Corresponding algorithms with imprecise probabilities under the three cases are explained and illustrated by simple examples. © 2011 Society for Risk Analysis.
Event-Tree Analysis with Imprecise Probabilities
Tonon, Fulvio
Writing – Original Draft Preparation
2012-01-01
Abstract
Novel methods are proposed for dealing with event-tree analysis under imprecise probabilities, where one could measure chance or uncertainty without sharp numerical probabilities and express available evidence as upper and lower previsions (or expectations) of gambles (or bounded real functions). Sets of upper and lower previsions generate a convex set of probability distributions (or measures). Any probability distribution in this convex set should be considered in the event-tree analysis. This article focuses on the calculation of upper and lower bounds of the prevision (or the probability) of some outcome at the bottom of the event-tree. Three cases of given information/judgments on probabilities of outcomes are considered: (1) probabilities conditional to the occurrence of the event at the upper level; (2) total probabilities of occurrences, that is, not conditional to other events; (3) the combination of the previous two cases. Corresponding algorithms with imprecise probabilities under the three cases are explained and illustrated by simple examples. © 2011 Society for Risk Analysis.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.