We consider a defaultable asset whose risk-neutral pricing dynamics are described by an exponential Levy-type martingale subject to default. This class of models allows for local volatility, local default intensity, and a locally dependent Levy measure. Generalizing and extending the novel adjoint expansion technique of Pagliarani, Pascucci, and Riga (2013), we derive a family of asymptotic expansions for the transition density of the underlying as well as for European-style option prices and defaultable bond prices. For the density expansion, we also provide error bounds for the truncated asymptotic series. Our method is numerically efficient; approximate transition densities and European option prices are computed via Fourier transforms; approximate bond prices are computed as finite series. Additionally, as in Pagliarani et al. (2013), for models with Gaussian-type jumps, approximate option prices can be computed in closed form. Sample Mathematica code is provided.

A family of density expansions for Lévy-type processes

Pagliarani S;
2015-01-01

Abstract

We consider a defaultable asset whose risk-neutral pricing dynamics are described by an exponential Levy-type martingale subject to default. This class of models allows for local volatility, local default intensity, and a locally dependent Levy measure. Generalizing and extending the novel adjoint expansion technique of Pagliarani, Pascucci, and Riga (2013), we derive a family of asymptotic expansions for the transition density of the underlying as well as for European-style option prices and defaultable bond prices. For the density expansion, we also provide error bounds for the truncated asymptotic series. Our method is numerically efficient; approximate transition densities and European option prices are computed via Fourier transforms; approximate bond prices are computed as finite series. Additionally, as in Pagliarani et al. (2013), for models with Gaussian-type jumps, approximate option prices can be computed in closed form. Sample Mathematica code is provided.
File in questo prodotto:
File Dimensione Formato  
13-AAP994.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 369.02 kB
Formato Adobe PDF
369.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1130657
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 15
social impact