A simplified lumped geometrical and electrical model for the high-frequency impedance spectroscopy (HFIS) response of nanoelectrodes to T=3 capsids and full viruses is developed starting from atomistic descriptions, in order to test the theoretical response of a realistic HFIS CMOS biosensor platform to different viruses. Capacitance spectra are computed for plant (cowpea chlorotic mottle virus), animal (rabbit haemorrhagic disease virus), and human (hepatitis A virus) viruses. A few common features of the spectra are highlighted, and the role of virus charge, pH, and ionic strength on the expected signal is discussed. They suggest that the frequency of highest sensitivity at nearly physiological concentrations (100 mM) is within reach of existing HFIS platform designs.

On the Response of Nanoelectrode Impedance Spectroscopy Measures to Plant, Animal, and Human Viruses

Cossettini, Andrea
;
Selmi, Luca
2018-01-01

Abstract

A simplified lumped geometrical and electrical model for the high-frequency impedance spectroscopy (HFIS) response of nanoelectrodes to T=3 capsids and full viruses is developed starting from atomistic descriptions, in order to test the theoretical response of a realistic HFIS CMOS biosensor platform to different viruses. Capacitance spectra are computed for plant (cowpea chlorotic mottle virus), animal (rabbit haemorrhagic disease virus), and human (hepatitis A virus) viruses. A few common features of the spectra are highlighted, and the role of virus charge, pH, and ionic strength on the expected signal is discussed. They suggest that the frequency of highest sensitivity at nearly physiological concentrations (100 mM) is within reach of existing HFIS platform designs.
File in questo prodotto:
File Dimensione Formato  
IEEETnanoBioScience_final.pdf

non disponibili

Descrizione: Articolo post-print
Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 3.14 MB
Formato Adobe PDF
3.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1132041
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact