Combinatorial optimization problems arise, in many forms, in vari- ous aspects of everyday life. Nowadays, a lot of services are driven by optimization algorithms, enabling us to make the best use of the available resources while guaranteeing a level of service. Ex- amples of such services are public transportation, goods delivery, university time-tabling, and patient scheduling. Thanks also to the open data movement, a lot of usage data about public and private services is accessible today, sometimes in aggregate form, to everyone. Examples of such data are traffic information (Google), bike sharing systems usage (CitiBike NYC), location services, etc. The availability of all this body of data allows us to better understand how people interacts with these services. However, in order for this information to be useful, it is necessary to develop tools to extract knowledge from it and to drive better decisions. In this context, optimization is a powerful tool, which can be used to improve the way the available resources are used, avoid squandering, and improve the sustainability of services. The fields of meta-heuristics, artificial intelligence, and oper- ations research, have been tackling many of these problems for years, without much interaction. However, in the last few years, such communities have started looking at each other’s advance- ments, in order to develop optimization techniques that are faster, more robust, and easier to maintain. This effort gave birth to the fertile field of hybrid meta-heuristics.

Hybrid meta-heuristics for combinatorial optimization / Tommaso Urli - Udine. , 2014 Apr 04. 26. ciclo

Hybrid meta-heuristics for combinatorial optimization

Urli, Tommaso
2014-04-04

Abstract

Combinatorial optimization problems arise, in many forms, in vari- ous aspects of everyday life. Nowadays, a lot of services are driven by optimization algorithms, enabling us to make the best use of the available resources while guaranteeing a level of service. Ex- amples of such services are public transportation, goods delivery, university time-tabling, and patient scheduling. Thanks also to the open data movement, a lot of usage data about public and private services is accessible today, sometimes in aggregate form, to everyone. Examples of such data are traffic information (Google), bike sharing systems usage (CitiBike NYC), location services, etc. The availability of all this body of data allows us to better understand how people interacts with these services. However, in order for this information to be useful, it is necessary to develop tools to extract knowledge from it and to drive better decisions. In this context, optimization is a powerful tool, which can be used to improve the way the available resources are used, avoid squandering, and improve the sustainability of services. The fields of meta-heuristics, artificial intelligence, and oper- ations research, have been tackling many of these problems for years, without much interaction. However, in the last few years, such communities have started looking at each other’s advance- ments, in order to develop optimization techniques that are faster, more robust, and easier to maintain. This effort gave birth to the fertile field of hybrid meta-heuristics.
4-apr-2014
Meta-heuristics; Hybrid-heuristics; Combinatorial optimization
Hybrid meta-heuristics for combinatorial optimization / Tommaso Urli - Udine. , 2014 Apr 04. 26. ciclo
File in questo prodotto:
File Dimensione Formato  
10990_445_thesis.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 2.52 MB
Formato Adobe PDF
2.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1132665
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact