The internal inspection of large pipeline infrastructures, such as sewers and waterworks, is a fundamental task for the prevention of possible failures. In particular, visual inspection is typically performed by human operators on the basis of video sequences either acquired on-line or recorded for further off-line analysis. In this work, we propose a vision-based software approach to assist the human operator by conveniently showing the acquired data and by automatically detecting and highlighting the pipeline sections where relevant anomalies could occur.
A vision-based system for internal pipeline inspection
Claudio Piciarelli
;Danilo Avola;Gian Luca Foresti
2019-01-01
Abstract
The internal inspection of large pipeline infrastructures, such as sewers and waterworks, is a fundamental task for the prevention of possible failures. In particular, visual inspection is typically performed by human operators on the basis of video sequences either acquired on-line or recorded for further off-line analysis. In this work, we propose a vision-based software approach to assist the human operator by conveniently showing the acquired data and by automatically detecting and highlighting the pipeline sections where relevant anomalies could occur.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
tii.pdf
accesso aperto
Descrizione: versione pre-print
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
1.93 MB
Formato
Adobe PDF
|
1.93 MB | Adobe PDF | Visualizza/Apri |
tii (1).pdf
Open Access dal 07/06/2021
Descrizione: Versione post-print
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
10.23 MB
Formato
Adobe PDF
|
10.23 MB | Adobe PDF | Visualizza/Apri |
08477037.pdf
non disponibili
Descrizione: Versione editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
3.75 MB
Formato
Adobe PDF
|
3.75 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.