We present an improved Random Path Length algorithm to accurately and efficiently estimate the design space of heterostructure avalanche photodiodes (APDs) in terms of gain, noise and bandwidth without any need of full Monte Carlo transport simulations. The underlying nonlocal model for impact ionization goes beyond the Dead Space concept and it is suited to handle staircase structures composed by a superlattice of III-V compounds as well as thick and thin p-i-n APDs. The model parameters have been calibrated on GaAs and AlxGa1−xAs p-i-n APDs in a previous work. In this work GaAs p-i-n APDs are compared to staircase structures in terms of noise and bandwidth.

An Improved Random Path Length Algorithm for p-i-n and Staircase Avalanche Photodiodes

Pilotto, Alessandro
;
Palestri, Pierpaolo;Selmi, Luca;Driussi, Francesco;
2018-01-01

Abstract

We present an improved Random Path Length algorithm to accurately and efficiently estimate the design space of heterostructure avalanche photodiodes (APDs) in terms of gain, noise and bandwidth without any need of full Monte Carlo transport simulations. The underlying nonlocal model for impact ionization goes beyond the Dead Space concept and it is suited to handle staircase structures composed by a superlattice of III-V compounds as well as thick and thin p-i-n APDs. The model parameters have been calibrated on GaAs and AlxGa1−xAs p-i-n APDs in a previous work. In this work GaAs p-i-n APDs are compared to staircase structures in terms of noise and bandwidth.
2018
978-1-5386-6790-3
File in questo prodotto:
File Dimensione Formato  
2018_Pilotto_SISPAD.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 372.75 kB
Formato Adobe PDF
372.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1141684
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact