This work reports on the fabrication and characterization of a novel high-speed, low-noise X-ray Avalanche Photodiode based on III-V compound semiconductors operating over an extended photon energy range. These materials were suggested as their higher atomic numbers allow for the absorption of higher photon energies; hence, shorter response times can be achieved by growing APDs with thinner active regions. In addition, the use of staircase hetero-junctions enhances electron multiplication and results in lower noise if compared with conventional p-i-n diodes. In this work, molecular beam epitaxy was used to produce GaAs/AlGaAs APDs with separated absorption and multiplication regions. The multiplication region, separated from the absorption region by a δ p-doped layer of carbon, contains a staircase structure composed of nanometric layers of AlGaAs and GaAs, which alternate periodically. The periodic modulation of the band gap enables a well-defined charge multiplication and results in low multiplication noise. Several devices were characterized in terms of dark current, photocurrents generated utilizing visible and hard X-ray sources as well as noise generated under laser light.

Investigation of the behaviour of GaAs/AlGaAs SAM-APDs for synchrotron radiation

Nichetti, Camilla
Primo
;
Pilotto, Alessandro;Driussi, Francesco;Palestri, Pierpaolo;Selmi, Luca;
2019-01-01

Abstract

This work reports on the fabrication and characterization of a novel high-speed, low-noise X-ray Avalanche Photodiode based on III-V compound semiconductors operating over an extended photon energy range. These materials were suggested as their higher atomic numbers allow for the absorption of higher photon energies; hence, shorter response times can be achieved by growing APDs with thinner active regions. In addition, the use of staircase hetero-junctions enhances electron multiplication and results in lower noise if compared with conventional p-i-n diodes. In this work, molecular beam epitaxy was used to produce GaAs/AlGaAs APDs with separated absorption and multiplication regions. The multiplication region, separated from the absorption region by a δ p-doped layer of carbon, contains a staircase structure composed of nanometric layers of AlGaAs and GaAs, which alternate periodically. The periodic modulation of the band gap enables a well-defined charge multiplication and results in low multiplication noise. Several devices were characterized in terms of dark current, photocurrents generated utilizing visible and hard X-ray sources as well as noise generated under laser light.
2019
9780735417823
File in questo prodotto:
File Dimensione Formato  
2019_Nichetti_SRI.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1144166
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact