We consider the class of 0-semigroups (H;star) that are obtained by adding a zero element to a group (G; cdot) so that for all x,yin G it holds x star y not=0 Rightarrow x star y = xy. These semigroups are called 0-extensions of (G; cdot). We introduce a merging operation that constructs a 0-semihypergroup from a 0-extension of (G; cdot) by a suitable superposition of the product tables. We characterize a class of 0-simple semihypergroups that are merging of a 0-extension of an elementary Abelian 2-group. Moreover, we prove that in the finite case all such 0-semihypergroups can be obtained from a special construction where (H;star) is nilpotent.

Semihypergroups obtained by merging of 0-semigroups with groups

Fasino, Dario;Freni, Domenico;
2018-01-01

Abstract

We consider the class of 0-semigroups (H;star) that are obtained by adding a zero element to a group (G; cdot) so that for all x,yin G it holds x star y not=0 Rightarrow x star y = xy. These semigroups are called 0-extensions of (G; cdot). We introduce a merging operation that constructs a 0-semihypergroup from a 0-extension of (G; cdot) by a suitable superposition of the product tables. We characterize a class of 0-simple semihypergroups that are merging of a 0-extension of an elementary Abelian 2-group. Moreover, we prove that in the finite case all such 0-semihypergroups can be obtained from a special construction where (H;star) is nilpotent.
File in questo prodotto:
File Dimensione Formato  
(2018)Semihypergroups Obtained by Merging of 0-semigroups with Groups.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 303.04 kB
Formato Adobe PDF
303.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
(2018) Semihypergroups obtained by merging of 0-semigroups with groups.pdf

accesso aperto

Descrizione: File PDF dell'articolo inviato alla rivista per la pubblicazione
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 294.57 kB
Formato Adobe PDF
294.57 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1145518
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact