Lagoons and coastal semi-enclosed basins morphologically evolve depending on local waves, currents, and tidal conditions. In very shallow water depths, typical of tidal flats and mudflats, the bed shear stress due to the wind waves is a key factor governing sediment resuspension. A current line of research focuses on the distribution of wave shear stress with depth, this being a very important aspect related to the dynamic equilibrium of transitional areas. In this work a relevant contribution to this study is provided, by means of the comparison between experimental growth curves which predict the finite depth wave characteristics and the numerical results obtained by means a spectral model. In particular, the dominant role of the bottom friction dissipation is underlined, especially in the presence of irregular and heterogeneous sea beds. The effects of this energy loss on the wave field is investigated, highlighting that both the variability of the wave period and the relative bottom roughness can change the bed shear stress trend substantially.

On the wave bottom shear stress in shallow depths: The role ofwave period and bed roughness

Pascolo, Sara
;
Petti, Marco;Bosa, Silvia
2018-01-01

Abstract

Lagoons and coastal semi-enclosed basins morphologically evolve depending on local waves, currents, and tidal conditions. In very shallow water depths, typical of tidal flats and mudflats, the bed shear stress due to the wind waves is a key factor governing sediment resuspension. A current line of research focuses on the distribution of wave shear stress with depth, this being a very important aspect related to the dynamic equilibrium of transitional areas. In this work a relevant contribution to this study is provided, by means of the comparison between experimental growth curves which predict the finite depth wave characteristics and the numerical results obtained by means a spectral model. In particular, the dominant role of the bottom friction dissipation is underlined, especially in the presence of irregular and heterogeneous sea beds. The effects of this energy loss on the wave field is investigated, highlighting that both the variability of the wave period and the relative bottom roughness can change the bed shear stress trend substantially.
File in questo prodotto:
File Dimensione Formato  
water-10-01348.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.86 MB
Formato Adobe PDF
5.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1145906
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 10
social impact