The current predominant approach to neuroimaging data analysis is to use voxels as units of computation in a mass univariate approach which does not appropriately account for the existing spatial correlation and is plagued by problems of multiple comparisons. Therefore, there is a need to explore alternative approaches for inference on neuroimaging data that accurately model spatial autocorrelation, potentially providing better type I error control and more sensitive inference. In this project we examine the performance of a trend surface modeling (TSM) approach that is based on a biologically relevant parcellation of the brain. We present our results from applying the TSM to both task fMRI and resting-state fMRI and compare the latter to the results from the parametric software, FSL. We demonstrate that the TSM provides better Type I error control, as well as sensitive inference on task data.

The current predominant approach to neuroimaging data analysis is to use voxels as units of computation in a mass univariate approach which does not appropriately account for the existing spatial correlation and is plagued by problems of multiple comparisons. Therefore, there is a need to explore alternative approaches for inference on neuroimaging data that accurately model spatial autocorrelation, potentially providing better type I error control and more sensitive inference. In this project we examine the performance of a trend surface modeling (TSM) approach that is based on a biologically relevant parcellation of the brain. We present our results from applying the TSM to both task fMRI and resting-state fMRI and compare the latter to the results from the parametric software, FSL. We demonstrate that the TSM provides better Type I error control, as well as sensitive inference on task data.

Examining the performance of trend surface models for inference on Functional Magnetic Resonance Imaging (fMRI) data / Divya Brundavanam , 2019 Mar 01. 31. ciclo, Anno Accademico 2017/2018.

Examining the performance of trend surface models for inference on Functional Magnetic Resonance Imaging (fMRI) data

BRUNDAVANAM, DIVYA
2019-03-01

Abstract

The current predominant approach to neuroimaging data analysis is to use voxels as units of computation in a mass univariate approach which does not appropriately account for the existing spatial correlation and is plagued by problems of multiple comparisons. Therefore, there is a need to explore alternative approaches for inference on neuroimaging data that accurately model spatial autocorrelation, potentially providing better type I error control and more sensitive inference. In this project we examine the performance of a trend surface modeling (TSM) approach that is based on a biologically relevant parcellation of the brain. We present our results from applying the TSM to both task fMRI and resting-state fMRI and compare the latter to the results from the parametric software, FSL. We demonstrate that the TSM provides better Type I error control, as well as sensitive inference on task data.
1-mar-2019
The current predominant approach to neuroimaging data analysis is to use voxels as units of computation in a mass univariate approach which does not appropriately account for the existing spatial correlation and is plagued by problems of multiple comparisons. Therefore, there is a need to explore alternative approaches for inference on neuroimaging data that accurately model spatial autocorrelation, potentially providing better type I error control and more sensitive inference. In this project we examine the performance of a trend surface modeling (TSM) approach that is based on a biologically relevant parcellation of the brain. We present our results from applying the TSM to both task fMRI and resting-state fMRI and compare the latter to the results from the parametric software, FSL. We demonstrate that the TSM provides better Type I error control, as well as sensitive inference on task data.
trend surface model; fMRI; statistics; false positives;
Examining the performance of trend surface models for inference on Functional Magnetic Resonance Imaging (fMRI) data / Divya Brundavanam , 2019 Mar 01. 31. ciclo, Anno Accademico 2017/2018.
File in questo prodotto:
File Dimensione Formato  
DivyaB_Thesis_revised.pdf

accesso aperto

Licenza: Creative commons
Dimensione 4.01 MB
Formato Adobe PDF
4.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1147501
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact