We prove that the superlinear indefinite equation u'' + a(t)u^p = 0, where p > 1 and a(t) is a T-periodic sign-changing function satisfying the (sharp) mean value condition ∫a(t)dt<0, has positive subharmonic solutions of order k for any large integer k, thus providing a further contribution to a problem raised by G. J. Butler in its pioneering paper [JDE, 1976]. The proof, which applies to a larger class of indefinite equations, combines coincidence degree theory (yielding a positive harmonic solution) with the Poincaré-Birkhoff fixed point theorem (giving subharmonic solutions oscillating around it).

Positive subharmonic solutions to nonlinear ODEs with indefinite weight

Feltrin, Guglielmo
2018-01-01

Abstract

We prove that the superlinear indefinite equation u'' + a(t)u^p = 0, where p > 1 and a(t) is a T-periodic sign-changing function satisfying the (sharp) mean value condition ∫a(t)dt<0, has positive subharmonic solutions of order k for any large integer k, thus providing a further contribution to a problem raised by G. J. Butler in its pioneering paper [JDE, 1976]. The proof, which applies to a larger class of indefinite equations, combines coincidence degree theory (yielding a positive harmonic solution) with the Poincaré-Birkhoff fixed point theorem (giving subharmonic solutions oscillating around it).
File in questo prodotto:
File Dimensione Formato  
Boscaggin_Feltrin_CCM_2018.pdf

non disponibili

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 410.88 kB
Formato Adobe PDF
410.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1149604
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact