We present a fixed point theorem on topological cylinders in normed linear spaces for maps satisfying a property of stretching a space along paths. This result is a generalization of a similar theorem obtained by D. Papini and F. Zanolin. In view of the main result we discuss the existence of fixed points for maps defined on different types of domains and we propose alternative proofs for classical fixed point theorems, as Brouwer, Schauder and Krasnosel'skii ones.
A note on a fixed point theorem on topological cylinders
Feltrin, Guglielmo
2017-01-01
Abstract
We present a fixed point theorem on topological cylinders in normed linear spaces for maps satisfying a property of stretching a space along paths. This result is a generalization of a similar theorem obtained by D. Papini and F. Zanolin. In view of the main result we discuss the existence of fixed points for maps defined on different types of domains and we propose alternative proofs for classical fixed point theorems, as Brouwer, Schauder and Krasnosel'skii ones.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Feltrin_AMPA_2017.pdf
non disponibili
Descrizione: Articolo pubblicato
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
516.5 kB
Formato
Adobe PDF
|
516.5 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.