We present a fixed point theorem on topological cylinders in normed linear spaces for maps satisfying a property of stretching a space along paths. This result is a generalization of a similar theorem obtained by D. Papini and F. Zanolin. In view of the main result we discuss the existence of fixed points for maps defined on different types of domains and we propose alternative proofs for classical fixed point theorems, as Brouwer, Schauder and Krasnosel'skii ones.

A note on a fixed point theorem on topological cylinders

Feltrin, Guglielmo
2017-01-01

Abstract

We present a fixed point theorem on topological cylinders in normed linear spaces for maps satisfying a property of stretching a space along paths. This result is a generalization of a similar theorem obtained by D. Papini and F. Zanolin. In view of the main result we discuss the existence of fixed points for maps defined on different types of domains and we propose alternative proofs for classical fixed point theorems, as Brouwer, Schauder and Krasnosel'skii ones.
File in questo prodotto:
File Dimensione Formato  
Feltrin_AMPA_2017.pdf

non disponibili

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 516.5 kB
Formato Adobe PDF
516.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1149612
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact