Abstract: An auto-tuning and self-adaptation procedure for High Frequency Injection (HFI) based position and speed estimation algorithms in Interior Permanent Magnet Synchronous Motor (IPMSM) drives is proposed in this paper. Analytical developments show that, using conventional approaches, the dynamics of the high-frequency tracking loop varies with differential inductances, which in turn depend on the machine operating point. On-line estimation and adaptation of the small signal gain of the loop is proposed here, allowing accurate auto-tuning of the sensorless control scheme which does not rely on a priori knowledge of the machine parameters. On-line adaptation of Phase-Locked Loop (PLL) gains and of the injected voltage magnitude is also possible, leading to important advantages from the performance, loss and acoustic point of view. The theoretical basis of the method has been introduced first and the main concept demonstrated by means of simulations. Implementation has been carried out using the hardware of a commercial industrial drive and two Interior Permanent Magnet Synchronous Motors, namely a prototype and an off-the-shelf machine. Experimental tests demonstrate the feasibility and effectiveness of the proposal.
Self-adaptive high-frequency injection based sensorless control for interior permanent magnet synchronous motor drives †
Calligaro S.
;Petrella R.
2019-01-01
Abstract
Abstract: An auto-tuning and self-adaptation procedure for High Frequency Injection (HFI) based position and speed estimation algorithms in Interior Permanent Magnet Synchronous Motor (IPMSM) drives is proposed in this paper. Analytical developments show that, using conventional approaches, the dynamics of the high-frequency tracking loop varies with differential inductances, which in turn depend on the machine operating point. On-line estimation and adaptation of the small signal gain of the loop is proposed here, allowing accurate auto-tuning of the sensorless control scheme which does not rely on a priori knowledge of the machine parameters. On-line adaptation of Phase-Locked Loop (PLL) gains and of the injected voltage magnitude is also possible, leading to important advantages from the performance, loss and acoustic point of view. The theoretical basis of the method has been introduced first and the main concept demonstrated by means of simulations. Implementation has been carried out using the hardware of a commercial industrial drive and two Interior Permanent Magnet Synchronous Motors, namely a prototype and an off-the-shelf machine. Experimental tests demonstrate the feasibility and effectiveness of the proposal.File | Dimensione | Formato | |
---|---|---|---|
energies-12-03645.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
11.02 MB
Formato
Adobe PDF
|
11.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.