We study the periodic boundary value problem associated with the ϕ-Laplacian equation of the form (ϕ(u'))'+f(u)u'+g(t,u)=s, where s is a real parameter, f and g are continuous functions, and g is T-periodic in the variable t. The interest is in Ambrosetti–Prodi type alternatives which provide the existence of zero, one or two solutions depending on the choice of the parameter s. We investigate this problem for a broad family of nonlinearities, under non-uniform type conditions on g(t,u) as u→± ∞. We generalize, in a unified framework, various classical and recent results on parameter-dependent nonlinear equations.

Periodic solutions to parameter-dependent equations with a ϕ-Laplacian type operator

Feltrin, Guglielmo;Zanolin, Fabio
2019-01-01

Abstract

We study the periodic boundary value problem associated with the ϕ-Laplacian equation of the form (ϕ(u'))'+f(u)u'+g(t,u)=s, where s is a real parameter, f and g are continuous functions, and g is T-periodic in the variable t. The interest is in Ambrosetti–Prodi type alternatives which provide the existence of zero, one or two solutions depending on the choice of the parameter s. We investigate this problem for a broad family of nonlinearities, under non-uniform type conditions on g(t,u) as u→± ∞. We generalize, in a unified framework, various classical and recent results on parameter-dependent nonlinear equations.
File in questo prodotto:
File Dimensione Formato  
Feltrin_Sovrano_Zanolin_NODEA_2019.pdf

non disponibili

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 554.33 kB
Formato Adobe PDF
554.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1168881
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact