Subcooling methods at the exit of the gas cooler in transcritical CO2 commercial refrigeration systems have been studied in the recent years showing that overall remarkable improvements can be obtained. Another strategy that results efficient is the use of evaporative systems at the gas cooler (adiabatic cooling) as it allows to significantly reduce the refrigerant quality at the liquid receiver and to lower the heat rejection pressure. In this work, a fully instrumented CO2 transcritical booster system with parallel compression, in operation in a small size supermarket in northern Italy, made available measured data of its performance when subcooling and/or adiabatic cooling are active. The plant operates in a mild climate, where it suffers operation at transcritical conditions for most of the year. Subcooling in this plant is performed by coupling the refrigeration system with the HVAC system. Taking advantage of experimental measurements, a model in the TRNSYS environment is validated and allows the prediction of the annual plant performance when these strategies are adopted. The adiabatic cooling showed to allow a significant reduction (about 10%) in the energy use, and makes unnecessary the use of a parallel compressor. Subcooling by the HVAC gives rise to a reduced saving (2.9 %) due to the absence of a dedicated mechanical subcooler, however it is almost comparable to parallel compression. These trends are confirmed in two other hot and humid climates.
Transcritical CO2 commercial refrigeration plant with adiabatic gas cooler and subcooling via HVAC: field tests and modelling
G. Cortella
;P. D'Agaro;M. A. Coppola
2020-01-01
Abstract
Subcooling methods at the exit of the gas cooler in transcritical CO2 commercial refrigeration systems have been studied in the recent years showing that overall remarkable improvements can be obtained. Another strategy that results efficient is the use of evaporative systems at the gas cooler (adiabatic cooling) as it allows to significantly reduce the refrigerant quality at the liquid receiver and to lower the heat rejection pressure. In this work, a fully instrumented CO2 transcritical booster system with parallel compression, in operation in a small size supermarket in northern Italy, made available measured data of its performance when subcooling and/or adiabatic cooling are active. The plant operates in a mild climate, where it suffers operation at transcritical conditions for most of the year. Subcooling in this plant is performed by coupling the refrigeration system with the HVAC system. Taking advantage of experimental measurements, a model in the TRNSYS environment is validated and allows the prediction of the annual plant performance when these strategies are adopted. The adiabatic cooling showed to allow a significant reduction (about 10%) in the energy use, and makes unnecessary the use of a parallel compressor. Subcooling by the HVAC gives rise to a reduced saving (2.9 %) due to the absence of a dedicated mechanical subcooler, however it is almost comparable to parallel compression. These trends are confirmed in two other hot and humid climates.File | Dimensione | Formato | |
---|---|---|---|
rj39 preproof.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.2 MB
Formato
Adobe PDF
|
1.2 MB | Adobe PDF | Visualizza/Apri |
rj39.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
1.81 MB
Formato
Adobe PDF
|
1.81 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.