We discuss the growth function of a finitely generated cascade and its connection to the growth function of its related semi-direct product (Conjecture 1.9). The results is applied for simpler proof of well-known results in the realm of geometric group theory. We show that the finitely generated cascades on nilpotent groups obey the dichotomy rule (only polynomial and exponential growth are possible).
Some applications of algebraic entropy to the proof of Milnor-Wolf theorem
Dikranjan D.;Freni D.;
2019-01-01
Abstract
We discuss the growth function of a finitely generated cascade and its connection to the growth function of its related semi-direct product (Conjecture 1.9). The results is applied for simpler proof of well-known results in the realm of geometric group theory. We show that the finitely generated cascades on nilpotent groups obey the dichotomy rule (only polynomial and exponential growth are possible).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
(2019)Some application of algebraic entropi to the proof of Milnor-Wolf Theorem.pdf
non disponibili
Licenza:
Non pubblico
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
(2019) Some applications of algebraic entropy to the proof of Milnor-Wolf theorem.pdf
accesso aperto
Descrizione: Copia articolo inviata alla rivista per la pubblicazione
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
408.63 kB
Formato
Adobe PDF
|
408.63 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.