We discuss the growth function of a finitely generated cascade and its connection to the growth function of its related semi-direct product (Conjecture 1.9). The results is applied for simpler proof of well-known results in the realm of geometric group theory. We show that the finitely generated cascades on nilpotent groups obey the dichotomy rule (only polynomial and exponential growth are possible).

Some applications of algebraic entropy to the proof of Milnor-Wolf theorem

Dikranjan D.;Freni D.;
2019-01-01

Abstract

We discuss the growth function of a finitely generated cascade and its connection to the growth function of its related semi-direct product (Conjecture 1.9). The results is applied for simpler proof of well-known results in the realm of geometric group theory. We show that the finitely generated cascades on nilpotent groups obey the dichotomy rule (only polynomial and exponential growth are possible).
File in questo prodotto:
File Dimensione Formato  
(2019)Some application of algebraic entropi to the proof of Milnor-Wolf Theorem.pdf

non disponibili

Licenza: Non pubblico
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
(2019) Some applications of algebraic entropy to the proof of Milnor-Wolf theorem.pdf

accesso aperto

Descrizione: Copia articolo inviata alla rivista per la pubblicazione
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 408.63 kB
Formato Adobe PDF
408.63 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1170492
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact