In this paper we consider modal team logic, a generalization of classical modal logic in which it is possible to describe dependence phenomena between data. We prove that most known fragments of full modal team logic allow the elimination of the so called 'existential bisimulation quantifiers', where the existence of a certain set is required only modulo bisimulation (i.e. not in the model itself but possibly in a bisimilar model). As a consequence, we prove that these fragments enjoy the uniform interpolation property.
Uniform interpolation for propositional and modal team logics
Giovanna D'Agostino
2019-01-01
Abstract
In this paper we consider modal team logic, a generalization of classical modal logic in which it is possible to describe dependence phenomena between data. We prove that most known fragments of full modal team logic allow the elimination of the so called 'existential bisimulation quantifiers', where the existence of a certain set is required only modulo bisimulation (i.e. not in the model itself but possibly in a bisimilar model). As a consequence, we prove that these fragments enjoy the uniform interpolation property.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1810.05395.pdf
accesso aperto
Descrizione: Articolo in pre-print
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
195.3 kB
Formato
Adobe PDF
|
195.3 kB | Adobe PDF | Visualizza/Apri |
exz006.pdf
non disponibili
Descrizione: Articolo Principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
321 kB
Formato
Adobe PDF
|
321 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.