Peptidomimetics containing (S)- or (R)-imidazolidin-2-one-4- carboxylate (Imi) have been obtained by the expedient in-peptide cyclization of (S)- or (R)-α,β-diaminopropionic acid (Dap) residues. These Imi scaffolds behave as proline analogues characterized by a flat structure and a transrestricted geometry of the preceding peptide bond and induce well-defined secondary structures in a biomimetic environment. While (S)-Imi peptides adopted a γ′-turn conformation, (R)-Imi induced the contemporary formation of a γ-turn and a rare 11-membered H-bonded structure in the 2→4 opposite direction of the sequence, identified as a ε-turn. In order to exploit these Imi scaffolds as general promoters of unusual secondary structures, proteinaceous side chains have been introduced at the N1 position of the five-membered ring, potentially mimicking any residues. Finally, the Imi rings have been equipped with unnatural side chains or with functionalized substituents, which can be utilized as linkers to chemoselectively bind the Imi-peptides onto nanoparticles, biomaterials, or diagnostic probes.
In-Peptide Synthesis of Imidazolidin-2-one Scaffolds, Equippable with Proteinogenic or Taggable/Linkable Side Chains, General Promoters of Unusual Secondary Structures
DE MARCO, Rossella
;
2019-01-01
Abstract
Peptidomimetics containing (S)- or (R)-imidazolidin-2-one-4- carboxylate (Imi) have been obtained by the expedient in-peptide cyclization of (S)- or (R)-α,β-diaminopropionic acid (Dap) residues. These Imi scaffolds behave as proline analogues characterized by a flat structure and a transrestricted geometry of the preceding peptide bond and induce well-defined secondary structures in a biomimetic environment. While (S)-Imi peptides adopted a γ′-turn conformation, (R)-Imi induced the contemporary formation of a γ-turn and a rare 11-membered H-bonded structure in the 2→4 opposite direction of the sequence, identified as a ε-turn. In order to exploit these Imi scaffolds as general promoters of unusual secondary structures, proteinaceous side chains have been introduced at the N1 position of the five-membered ring, potentially mimicking any residues. Finally, the Imi rings have been equipped with unnatural side chains or with functionalized substituents, which can be utilized as linkers to chemoselectively bind the Imi-peptides onto nanoparticles, biomaterials, or diagnostic probes.File | Dimensione | Formato | |
---|---|---|---|
JOC 2019.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
1.5 MB
Formato
Adobe PDF
|
1.5 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
JOC Supporting Info 2019.doc
non disponibili
Descrizione: supporting information
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
1.12 MB
Formato
Microsoft Word
|
1.12 MB | Microsoft Word | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.