We prove the existence of infinitely many periodic solutions, as well as the presence of chaotic dynamics, for a periodically perturbed planar Liénard system of the form x' = y−F(x)+p(ωt), y' = −g(x). We consider the case in which the perturbing term is not necessarily small. Such a result is achieved by a topological method, that is by proving the presence of a horseshoe structure.
Chaotic dynamics in a periodically perturbed Liénard system
Papini D.;Zanolin F.
2019-01-01
Abstract
We prove the existence of infinitely many periodic solutions, as well as the presence of chaotic dynamics, for a periodically perturbed planar Liénard system of the form x' = y−F(x)+p(ωt), y' = −g(x). We consider the case in which the perturbing term is not necessarily small. Such a result is achieved by a topological method, that is by proving the presence of a horseshoe structure.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
euclid.die.1571731511.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
436.73 kB
Formato
Adobe PDF
|
436.73 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
PaViZa_prep.pdf
non disponibili
Descrizione: Pre-print
Tipologia:
Documento in Pre-print
Licenza:
Non pubblico
Dimensione
505.9 kB
Formato
Adobe PDF
|
505.9 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.