We prove the existence of a pair of positive radial solutions for the Neumann boundary value problem div(∇u/sqrt(1-|∇u|^2))+λa(|x|)u^p=0, in B, ∂νu=0, on ∂B, where B is a ball centered at the origin, a(|x|) is a radial sign-changing function with ∫_B a(|x|)dx<0, p>1 and λ>0 is a large parameter. The proof is based on the Leray–Schauder degree theory and extends to a larger class of nonlinearities.

Pairs of positive radial solutions for a Minkowski-curvature Neumann problem with indefinite weight

Feltrin, Guglielmo
2020-01-01

Abstract

We prove the existence of a pair of positive radial solutions for the Neumann boundary value problem div(∇u/sqrt(1-|∇u|^2))+λa(|x|)u^p=0, in B, ∂νu=0, on ∂B, where B is a ball centered at the origin, a(|x|) is a radial sign-changing function with ∫_B a(|x|)dx<0, p>1 and λ>0 is a large parameter. The proof is based on the Leray–Schauder degree theory and extends to a larger class of nonlinearities.
File in questo prodotto:
File Dimensione Formato  
Boscaggin_Feltrin_NA_2020.pdf

non disponibili

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 886.26 kB
Formato Adobe PDF
886.26 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1177380
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact