We prove the existence of a pair of positive radial solutions for the Neumann boundary value problem div(∇u/sqrt(1-|∇u|^2))+λa(|x|)u^p=0, in B, ∂νu=0, on ∂B, where B is a ball centered at the origin, a(|x|) is a radial sign-changing function with ∫_B a(|x|)dx<0, p>1 and λ>0 is a large parameter. The proof is based on the Leray–Schauder degree theory and extends to a larger class of nonlinearities.
Pairs of positive radial solutions for a Minkowski-curvature Neumann problem with indefinite weight
Feltrin, Guglielmo
2020-01-01
Abstract
We prove the existence of a pair of positive radial solutions for the Neumann boundary value problem div(∇u/sqrt(1-|∇u|^2))+λa(|x|)u^p=0, in B, ∂νu=0, on ∂B, where B is a ball centered at the origin, a(|x|) is a radial sign-changing function with ∫_B a(|x|)dx<0, p>1 and λ>0 is a large parameter. The proof is based on the Leray–Schauder degree theory and extends to a larger class of nonlinearities.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Boscaggin_Feltrin_NA_2020.pdf
non disponibili
Descrizione: Articolo pubblicato
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
886.26 kB
Formato
Adobe PDF
|
886.26 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.