Let A,B be matrices in SL(2,R) having trace greater than or equal to 2. Assume the pair A,B is coherently oriented, that is, can be conjugated to a pair having nonnegative entries. Assume also that either A,B^(-1) is coherently oriented as well, or A,B have integer entries. Then the Lagarias-Wang finiteness conjecture holds for the set {A,B}, with optimal product in {A,B,AB,A^2B,AB^2}. In particular, it holds for every matrix pair in SL(2,Z>=0).

The finiteness conjecture holds in SL(2,Z>=0)^2

Giovanni Panti
;
2021-01-01

Abstract

Let A,B be matrices in SL(2,R) having trace greater than or equal to 2. Assume the pair A,B is coherently oriented, that is, can be conjugated to a pair having nonnegative entries. Assume also that either A,B^(-1) is coherently oriented as well, or A,B have integer entries. Then the Lagarias-Wang finiteness conjecture holds for the set {A,B}, with optimal product in {A,B,AB,A^2B,AB^2}. In particular, it holds for every matrix pair in SL(2,Z>=0).
File in questo prodotto:
File Dimensione Formato  
finiteness.pdf

non disponibili

Descrizione: Author-created published version
Tipologia: Documento in Pre-print
Licenza: Non pubblico
Dimensione 433.94 kB
Formato Adobe PDF
433.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1187507
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact