We present a fast algorithm for computing the QR factorization of Cauchy matrices with real nodes. The algorithm works for almost any input matrix, does not require squaring the matrix, and fully exploits the displacement structure of Cauchy matrices. We prove that, if the determinant of a certain semiseparable matrix is non-zero, a three term recurrence relation among the rows or columns of the factors exists. Copyright © 2002 John Wiley & Sons, Ltd.
A Lanczos-type algorithm for the QR factorization of regular Cauchy matrices
Fasino D.
;
2002-01-01
Abstract
We present a fast algorithm for computing the QR factorization of Cauchy matrices with real nodes. The algorithm works for almost any input matrix, does not require squaring the matrix, and fully exploits the displacement structure of Cauchy matrices. We prove that, if the determinant of a certain semiseparable matrix is non-zero, a three term recurrence relation among the rows or columns of the factors exists. Copyright © 2002 John Wiley & Sons, Ltd.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
NLA.RegCauchyQR.pdf
non disponibili
Descrizione: Articolo
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
164.78 kB
Formato
Adobe PDF
|
164.78 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.