Nylon-12 is an important structural polymer in wide use in the form of fibres and bulk structures. Fused filament fabrication (FFF) is an extrusion-based additive manufacturing (AM) method for rapid prototyping and final product manufacturing of thermoplastic polymer objects. The resultant microstructure of FFF-produced samples is strongly affected by the cooling rates and thermal gradients experienced across the part. The crystallisation behaviour during cooling and solidification influences the micro- and nano-structure, and deserves detailed investigation. A commercial Nylon-12 filament and FFF-produced Nylon-12 parts were studied by differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS) to examine the effect of cooling rates under non-isothermal crystallisation conditions on the microstructure and properties. Slower cooling rates caused more perfect crystallite formation, as well as alteration to the thermal properties.

Synchrotron x-ray scattering analysis of nylon-12 crystallisation variation depending on 3D printing conditions

Salvati E.;
2020-01-01

Abstract

Nylon-12 is an important structural polymer in wide use in the form of fibres and bulk structures. Fused filament fabrication (FFF) is an extrusion-based additive manufacturing (AM) method for rapid prototyping and final product manufacturing of thermoplastic polymer objects. The resultant microstructure of FFF-produced samples is strongly affected by the cooling rates and thermal gradients experienced across the part. The crystallisation behaviour during cooling and solidification influences the micro- and nano-structure, and deserves detailed investigation. A commercial Nylon-12 filament and FFF-produced Nylon-12 parts were studied by differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS) to examine the effect of cooling rates under non-isothermal crystallisation conditions on the microstructure and properties. Slower cooling rates caused more perfect crystallite formation, as well as alteration to the thermal properties.
File in questo prodotto:
File Dimensione Formato  
polymers-12-01169.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 7.18 MB
Formato Adobe PDF
7.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1187869
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact