Enzyme-linked immunosorbent assays are currently the most popular methods to quantify gluten in foods. Unfortunately, the antibodies used as specific receptors in such methods are not compatible with the usual solvents for the extraction of gluten proteins. In consequence, commercial tests require a high dilution of the sample after the extraction, increasing the limit of quantification and decreasing convenience. In this work, we have rationally truncated an aptamer capable of recognizing gliadin in a deep eutectic solvent (DES). The truncated aptamer is a 19-nucleotides-long DNA that minimizes self-hybridization, allowing the development of an electrochemical sandwich-based sensor for the quantification of gluten in the DES ethaline. The sensor incorporates two identical biotin-labeled truncated aptamers, one of which is immobilized on a carbon screen-printed electrode and the other reports the binding of gliadin after incubation in streptavidin-peroxidase. This sensor can detect gliadin in DES, with a dynamic range between 1 and 100 μg/L and an intra-assay coefficient of variation of 11%. This analytical performance allows the quantification of 20 μg of gluten/kg of food when 1 g of food is extracted with 10 mL of ethaline. We demonstrate the ability of this method to achieve the measurement of gluten in food samples, after the extraction with pure ethaline. The assay is useful for the analysis of residual gluten levels in foods, thus facilitating the evaluation of any potential health risk associated with the consumption of such food by people with celiac disease or other gluten-related disorders.
Truncated aptamers as selective receptors in a gluten sensor supporting direct measurement in a deep eutectic solvent
Svigelj R.;Dossi N.;Toniolo R.;
2020-01-01
Abstract
Enzyme-linked immunosorbent assays are currently the most popular methods to quantify gluten in foods. Unfortunately, the antibodies used as specific receptors in such methods are not compatible with the usual solvents for the extraction of gluten proteins. In consequence, commercial tests require a high dilution of the sample after the extraction, increasing the limit of quantification and decreasing convenience. In this work, we have rationally truncated an aptamer capable of recognizing gliadin in a deep eutectic solvent (DES). The truncated aptamer is a 19-nucleotides-long DNA that minimizes self-hybridization, allowing the development of an electrochemical sandwich-based sensor for the quantification of gluten in the DES ethaline. The sensor incorporates two identical biotin-labeled truncated aptamers, one of which is immobilized on a carbon screen-printed electrode and the other reports the binding of gliadin after incubation in streptavidin-peroxidase. This sensor can detect gliadin in DES, with a dynamic range between 1 and 100 μg/L and an intra-assay coefficient of variation of 11%. This analytical performance allows the quantification of 20 μg of gluten/kg of food when 1 g of food is extracted with 10 mL of ethaline. We demonstrate the ability of this method to achieve the measurement of gluten in food samples, after the extraction with pure ethaline. The assay is useful for the analysis of residual gluten levels in foods, thus facilitating the evaluation of any potential health risk associated with the consumption of such food by people with celiac disease or other gluten-related disorders.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.