We discuss an approach for fitting robust nonlinear regression models, which can be employed to model and predict the contagion dynamics of the Covid-19 in Italy. The focus is on the analysis of epidemic data using robust dose-response curves, but the functionality is applicable to arbitrary nonlinear regression models.

Robust inference for nonlinear regression models from the Tsallis score: application to Covid-19 contagion in Italy

Mameli, Valentina;Ruli, Erlis;
2020-01-01

Abstract

We discuss an approach for fitting robust nonlinear regression models, which can be employed to model and predict the contagion dynamics of the Covid-19 in Italy. The focus is on the analysis of epidemic data using robust dose-response curves, but the functionality is applicable to arbitrary nonlinear regression models.
File in questo prodotto:
File Dimensione Formato  
paper_NLNTS.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 311.24 kB
Formato Adobe PDF
311.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1188775
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact