As widely known, the basic reproduction number plays a key role in weighing birth/infection and death/recovery processes in several models of population dynamics. In this general setting, its characterization as the spectral radius of next generation operators is rather elegant, but simultaneously poses serious obstacles to its practical determination. In this work we address the problem numerically by reducing the relevant operators to matrices through a pseudospectral collocation, eventually computing the sought quantity by solving finite-dimensional eigenvalue problems. The approach is illustrated for two classes of models, respectively from ecology and epidemiology. Several numerical tests demonstrate experimentally important features of the method, like fast convergence and influence of the smoothness of the models' coefficients. Examples of robust analysis of instances of specific models are also presented to show potentialities and ease of application.

Efficient numerical computation of the basic reproduction number for structured population

Dimitri Breda;Vermiglio Rossana
2021-01-01

Abstract

As widely known, the basic reproduction number plays a key role in weighing birth/infection and death/recovery processes in several models of population dynamics. In this general setting, its characterization as the spectral radius of next generation operators is rather elegant, but simultaneously poses serious obstacles to its practical determination. In this work we address the problem numerically by reducing the relevant operators to matrices through a pseudospectral collocation, eventually computing the sought quantity by solving finite-dimensional eigenvalue problems. The approach is illustrated for two classes of models, respectively from ecology and epidemiology. Several numerical tests demonstrate experimentally important features of the method, like fast convergence and influence of the smoothness of the models' coefficients. Examples of robust analysis of instances of specific models are also presented to show potentialities and ease of application.
File in questo prodotto:
File Dimensione Formato  
R0_bfrv_New_R1.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 638.53 kB
Formato Adobe PDF
638.53 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1189061
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact