This work compares the microstructure and corrosion resistance of 316 L stainless steel samples prepared using two different additive manufacturing methods: selective laser melting (SLM), and laser metal deposition (LMD). A wrought material was used as reference. The specimens showed marked differences in their microstructure, as a result of the specific manufacturing conditions. All samples displayed similar corrosion potential and passive current density values. However, variations were seen in their potential passive range (SLM > LMD > Wrought). The wider passivity of the SLM specimen can be associated with its finer microstructure, which leads to a more stable native oxide.

Microstructure and corrosion behavior of 316L stainless steel prepared using different additive manufacturing methods: A comparative study bringing insights into the impact of microstructure on their passivity

Andreatta F.;
2020-01-01

Abstract

This work compares the microstructure and corrosion resistance of 316 L stainless steel samples prepared using two different additive manufacturing methods: selective laser melting (SLM), and laser metal deposition (LMD). A wrought material was used as reference. The specimens showed marked differences in their microstructure, as a result of the specific manufacturing conditions. All samples displayed similar corrosion potential and passive current density values. However, variations were seen in their potential passive range (SLM > LMD > Wrought). The wider passivity of the SLM specimen can be associated with its finer microstructure, which leads to a more stable native oxide.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1189165
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 85
  • ???jsp.display-item.citation.isi??? ND
social impact