Person re-identification is concerned with matching people across disjointed camera views at different places and different time instants. This task results of great interest in computer vision, especially in video surveillance applications where the re-identification and tracking of persons are required on uncontrolled crowded spaces and after long time periods. The latter aspects are responsible for most of the current unsolved problems of person re-identification, in fact, the presence of many people in a location as well as the passing of hours or days give arise to important visual appearance changes of people, for example, clothes, lighting, and occlusions; thus making person re-identification a very hard task. In this paper, for the first time in the state-of-the-art, a meta-feature based Long Short-Term Memory (LSTM) hashing model for person re-identification is presented. Starting from 2D skeletons extracted from RGB video streams, the proposed method computes a set of novel meta-features based on movement, gait, and bone proportions. These features are analysed by a network composed of a single LSTM layer and two dense layers. The first layer is used to create a pattern of the person’s identity, then, the seconds are used to generate a bodyprint hash through binary coding. The effectiveness of the proposed method is tested on three challenging datasets, that is, iLIDS-VID, PRID 2011, and MARS. In particular, the reported results show that the proposed method, which is not based on visual appearance of people, is fully competitive with respect to other methods based on visual features. In addition, thanks to its skeleton model abstraction, the method results to be a concrete contribute to address open problems, such as long-term re-identification and severe illumination changes, which tend to heavily influence the visual appearance of persons.

Bodyprint—a meta-feature based LSTM hashing model for person re-identification

Foresti G. L.;Piciarelli C.
2020-01-01

Abstract

Person re-identification is concerned with matching people across disjointed camera views at different places and different time instants. This task results of great interest in computer vision, especially in video surveillance applications where the re-identification and tracking of persons are required on uncontrolled crowded spaces and after long time periods. The latter aspects are responsible for most of the current unsolved problems of person re-identification, in fact, the presence of many people in a location as well as the passing of hours or days give arise to important visual appearance changes of people, for example, clothes, lighting, and occlusions; thus making person re-identification a very hard task. In this paper, for the first time in the state-of-the-art, a meta-feature based Long Short-Term Memory (LSTM) hashing model for person re-identification is presented. Starting from 2D skeletons extracted from RGB video streams, the proposed method computes a set of novel meta-features based on movement, gait, and bone proportions. These features are analysed by a network composed of a single LSTM layer and two dense layers. The first layer is used to create a pattern of the person’s identity, then, the seconds are used to generate a bodyprint hash through binary coding. The effectiveness of the proposed method is tested on three challenging datasets, that is, iLIDS-VID, PRID 2011, and MARS. In particular, the reported results show that the proposed method, which is not based on visual appearance of people, is fully competitive with respect to other methods based on visual features. In addition, thanks to its skeleton model abstraction, the method results to be a concrete contribute to address open problems, such as long-term re-identification and severe illumination changes, which tend to heavily influence the visual appearance of persons.
File in questo prodotto:
File Dimensione Formato  
sensors-20-05365-v2.pdf

accesso aperto

Descrizione: articolo principale (versione finale, open access)
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1190436
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact