We are concerned with a super-Liouville equation on compact surfaces with genus larger than one, obtaining the first non-trivial existence result for this class of problems via min-max methods. In particular we make use of a Nehari manifold and, after showing the validity of the Palais-Smale condition, we exhibit either a mountain pass or linking geometry.

Existence results for a super-liouville equation on compact surfaces

Jevnikar A.;
2020-01-01

Abstract

We are concerned with a super-Liouville equation on compact surfaces with genus larger than one, obtaining the first non-trivial existence result for this class of problems via min-max methods. In particular we make use of a Nehari manifold and, after showing the validity of the Palais-Smale condition, we exhibit either a mountain pass or linking geometry.
File in questo prodotto:
File Dimensione Formato  
Existence results for a super-Liouville equation on compact surfaces.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 695.56 kB
Formato Adobe PDF
695.56 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1194891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact