In this work we investigate the Weihrauch degree of the problem $mathsf{DS}$ of finding an infinite descending sequence through a given ill-founded linear order, which is shared by the problem $mathsf{BS}$ of finding a bad sequence through a given non-well quasi-order. We show that $mathsf{DS}$, despite being hard to solve (it has computable inputs with no hyperarithmetic solution), is rather weak in terms of uniform computational strength. To make the latter precise, we introduce the notion of the deterministic part of a Weihrauch degree. We then generalize $mathsf{DS}$ and $mathsf{BS}$ by considering $oldsymbol{Gamma}$-presented orders, where $oldsymbol{Gamma}$ is a Borel pointclass or $oldsymbol{Delta}^1_1$, $oldsymbol{Sigma}^1_1$, $oldsymbol{Pi}^1_1$. We study the obtained $mathsf{DS}$-hierarchy and $mathsf{BS}$-hierarchy of problems in comparison with the (effective) Baire hierarchy and show that they do not collapse at any finite level.
Finding descending sequences through ill-founded linear orders
Manlio Valenti
2021-01-01
Abstract
In this work we investigate the Weihrauch degree of the problem $mathsf{DS}$ of finding an infinite descending sequence through a given ill-founded linear order, which is shared by the problem $mathsf{BS}$ of finding a bad sequence through a given non-well quasi-order. We show that $mathsf{DS}$, despite being hard to solve (it has computable inputs with no hyperarithmetic solution), is rather weak in terms of uniform computational strength. To make the latter precise, we introduce the notion of the deterministic part of a Weihrauch degree. We then generalize $mathsf{DS}$ and $mathsf{BS}$ by considering $oldsymbol{Gamma}$-presented orders, where $oldsymbol{Gamma}$ is a Borel pointclass or $oldsymbol{Delta}^1_1$, $oldsymbol{Sigma}^1_1$, $oldsymbol{Pi}^1_1$. We study the obtained $mathsf{DS}$-hierarchy and $mathsf{BS}$-hierarchy of problems in comparison with the (effective) Baire hierarchy and show that they do not collapse at any finite level.File | Dimensione | Formato | |
---|---|---|---|
finding-descending-sequences-through-ill-founded-linear-orders.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
668.99 kB
Formato
Adobe PDF
|
668.99 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.