Let X⊂P^N be a projective, non-degenerate, irreducible smooth variety of dimensionn. After giving the definition ofgeneralised OADP-variety (one apparent double point), i.e. varieties X such that: ◦n(k+1)-(N-r)(k-r)+r=N, ◦there is one apparent (k+1)-secant (r-1)-space to a generic projection of X from a point, we concentrate in studying generalised OADP-surfaces in low dimensional projective spaces, and the main result of this paper is the classification of smooth surfaces in P^6 with one 4-secant plane through the general point of P^6.

A Severi type theorem for surfaces in P^6

Pietro De Poi
;
2021-01-01

Abstract

Let X⊂P^N be a projective, non-degenerate, irreducible smooth variety of dimensionn. After giving the definition ofgeneralised OADP-variety (one apparent double point), i.e. varieties X such that: ◦n(k+1)-(N-r)(k-r)+r=N, ◦there is one apparent (k+1)-secant (r-1)-space to a generic projection of X from a point, we concentrate in studying generalised OADP-surfaces in low dimensional projective spaces, and the main result of this paper is the classification of smooth surfaces in P^6 with one 4-secant plane through the general point of P^6.
File in questo prodotto:
File Dimensione Formato  
proc15263.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 255.67 kB
Formato Adobe PDF
255.67 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1195351
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact