In this study, the authors propose a novel architecture based on the combination of peak-to-average power ratio (PAPR) reduction with digital beamforming (BF) for mm-wave massive multiple-input multiple-output (MIMO) systems. In order to keep the power amplifiers (PAs) working at the same input back-off thus maximising the system power efficiency, they propose to perform time-domain transmit beam-steering by adding progressive time delays to the signals at each antenna element, while keeping the amplitude weights unitary. They show that these time delays can be obtained with a finite impulse response filter implementation of time-domain fractional delay filter structures such as Lagrange interpolation polynomials. They also introduce an analysis on the PAPR of the interpolated signals, where they derive an upper bound to it and show that its value is similar to that of the signal at the input of the interpolation filters, showing the feasibility of the proposed method. In addition, they present a detailed analysis where they show that a significant reduction in computational complexity is obtained when compared to frequency-domain BF. Simulation results validate that the novel proposed scheme combining PAPR reduction and digital BF offers high-precision beam-steering maintaining reduced PAPR in the delayed signals fed to the antennas.

Improving Energy Efficiency in Massive MIMO: Joint Digital Beam-steering and Tone-reservation PAPR Reduction

Tonello A. M.
2020-01-01

Abstract

In this study, the authors propose a novel architecture based on the combination of peak-to-average power ratio (PAPR) reduction with digital beamforming (BF) for mm-wave massive multiple-input multiple-output (MIMO) systems. In order to keep the power amplifiers (PAs) working at the same input back-off thus maximising the system power efficiency, they propose to perform time-domain transmit beam-steering by adding progressive time delays to the signals at each antenna element, while keeping the amplitude weights unitary. They show that these time delays can be obtained with a finite impulse response filter implementation of time-domain fractional delay filter structures such as Lagrange interpolation polynomials. They also introduce an analysis on the PAPR of the interpolated signals, where they derive an upper bound to it and show that its value is similar to that of the signal at the input of the interpolation filters, showing the feasibility of the proposed method. In addition, they present a detailed analysis where they show that a significant reduction in computational complexity is obtained when compared to frequency-domain BF. Simulation results validate that the novel proposed scheme combining PAPR reduction and digital BF offers high-precision beam-steering maintaining reduced PAPR in the delayed signals fed to the antennas.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1204052
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact