The geometric reinterpretation of the Finite Element Method (FEM) shows that Raviart–Thomas and Nédélec mass matrices map from degrees of freedoms (DoFs) attached to geometric elements of a tetrahedral grid to DoFs attached to the barycentric dual grid. The algebraic inverses of the mass matrices map DoFs attached to the barycentric dual grid back to DoFs attached to the corresponding primal tetrahedral grid, but they are of limited practical use since they are dense. In this paper we present a new geometric construction of sparse inverse mass matrices for arbitrary tetrahedral grids and possibly inhomogeneous and anisotropic materials, debunking the conventional wisdom that the barycentric dual grid prohibits a sparse representation for inverse mass matrices. In particular, we provide a unified framework for the construction of both edge and face mass matrices and their sparse inverses. Such a unifying principle relies on novel geometric reconstruction formulas, from which, according to a well-established design strategy, local mass matrices are constructed as the sum of a consistent and a stabilization part. A major difference with the approaches proposed so far is that the consistent part is defined geometrically and explicitly, that is, without the necessity of computing the inverses of local matrices. This provides a sensible speedup and an easier implementation. We use these new sparse inverse mass matrices to discretize a three-dimensional Poisson problem, providing the comparison between the results obtained by various formulations on a benchmark problem with analytical solution.

Explicit geometric construction of sparse inverse mass matrices for arbitrary tetrahedral grids

Pitassi S.;Trevisan F.;Specogna R.
2021-01-01

Abstract

The geometric reinterpretation of the Finite Element Method (FEM) shows that Raviart–Thomas and Nédélec mass matrices map from degrees of freedoms (DoFs) attached to geometric elements of a tetrahedral grid to DoFs attached to the barycentric dual grid. The algebraic inverses of the mass matrices map DoFs attached to the barycentric dual grid back to DoFs attached to the corresponding primal tetrahedral grid, but they are of limited practical use since they are dense. In this paper we present a new geometric construction of sparse inverse mass matrices for arbitrary tetrahedral grids and possibly inhomogeneous and anisotropic materials, debunking the conventional wisdom that the barycentric dual grid prohibits a sparse representation for inverse mass matrices. In particular, we provide a unified framework for the construction of both edge and face mass matrices and their sparse inverses. Such a unifying principle relies on novel geometric reconstruction formulas, from which, according to a well-established design strategy, local mass matrices are constructed as the sum of a consistent and a stabilization part. A major difference with the approaches proposed so far is that the consistent part is defined geometrically and explicitly, that is, without the necessity of computing the inverses of local matrices. This provides a sensible speedup and an easier implementation. We use these new sparse inverse mass matrices to discretize a three-dimensional Poisson problem, providing the comparison between the results obtained by various formulations on a benchmark problem with analytical solution.
File in questo prodotto:
File Dimensione Formato  
cmame_inverse_2021.pdf

non disponibili

Licenza: Non pubblico
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1206398
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact