This paper provides a uniqueness result for positive solutions of the Neumann and periodic boundary value problems associated with the φ-Laplacian equation (φ(u'))' + a(t)g(u) = 0, where φ is a homeomorphism with φ(0) = 0, a(t) is a stepwise indefinite weight and g(u) is a continuous function. When dealing with the p-Laplacian differential operator φ(s) = |s|^{p-2}s with p > 1, and the nonlinear term g(u) = u^γ with γ ∈ ℝ, we prove the existence of a unique positive solution when γ ϵ ]-∞, (1-2p)/(p-1)] ∪ ]p-1,+∞[.

Uniqueness of positive solutions for boundary value problems associated with indefinite φ-Laplacian-type equations

Feltrin, Guglielmo;Zanolin, Fabio
2021-01-01

Abstract

This paper provides a uniqueness result for positive solutions of the Neumann and periodic boundary value problems associated with the φ-Laplacian equation (φ(u'))' + a(t)g(u) = 0, where φ is a homeomorphism with φ(0) = 0, a(t) is a stepwise indefinite weight and g(u) is a continuous function. When dealing with the p-Laplacian differential operator φ(s) = |s|^{p-2}s with p > 1, and the nonlinear term g(u) = u^γ with γ ∈ ℝ, we prove the existence of a unique positive solution when γ ϵ ]-∞, (1-2p)/(p-1)] ∪ ]p-1,+∞[.
File in questo prodotto:
File Dimensione Formato  
Boscaggin_Feltrin_Zanolin_OM_2021.pdf

non disponibili

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1207166
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact