This paper provides a uniqueness result for positive solutions of the Neumann and periodic boundary value problems associated with the φ-Laplacian equation (φ(u'))' + a(t)g(u) = 0, where φ is a homeomorphism with φ(0) = 0, a(t) is a stepwise indefinite weight and g(u) is a continuous function. When dealing with the p-Laplacian differential operator φ(s) = |s|^{p-2}s with p > 1, and the nonlinear term g(u) = u^γ with γ ∈ ℝ, we prove the existence of a unique positive solution when γ ϵ ]-∞, (1-2p)/(p-1)] ∪ ]p-1,+∞[.
Uniqueness of positive solutions for boundary value problems associated with indefinite φ-Laplacian-type equations
Feltrin, Guglielmo;Zanolin, Fabio
2021-01-01
Abstract
This paper provides a uniqueness result for positive solutions of the Neumann and periodic boundary value problems associated with the φ-Laplacian equation (φ(u'))' + a(t)g(u) = 0, where φ is a homeomorphism with φ(0) = 0, a(t) is a stepwise indefinite weight and g(u) is a continuous function. When dealing with the p-Laplacian differential operator φ(s) = |s|^{p-2}s with p > 1, and the nonlinear term g(u) = u^γ with γ ∈ ℝ, we prove the existence of a unique positive solution when γ ϵ ]-∞, (1-2p)/(p-1)] ∪ ]p-1,+∞[.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Boscaggin_Feltrin_Zanolin_OM_2021.pdf
non disponibili
Descrizione: Articolo pubblicato
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
1.66 MB
Formato
Adobe PDF
|
1.66 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.