In this article, we examine the effect of shear on scalar transport in double diffusive convection (DDC). DDC results from the competing action of a stably stratified, rapidly diffusing scalar (temperature) and an unstably stratified, slowly diffusing scalar (salinity), which is characterized by fingering instabilities. We investigate, for the first time, the effect of shear on the diffusive and convective contributions to the total scalar transport flux within a confined fluid layer, examining also the associated fingering dynamics and flow structure. We base our analysis on fully resolved numerical simulations under the Oberbeck–Boussinesq condition. The problem has five governing parameters: The salinity Prandtl number, Prs (momentum-to-salinity diffusivity ratio); the salinity Rayleigh number, Ras (measure of the fluid instability due to salinity differences); the Lewis number, Le (thermal-to-salinity diffusivity ratio); the density ratio, K (measure of the effective flow stratification), and the shear rate, C. Simulations are performed at fixed Prs, Ras, Le, and K, while the effect of shear is accounted for by considering different values of C. Preliminary results show that shear tends to damp the growth of fingering instability, leading to highly anisotropic DDC dynamics associated with the formation of regular salinity sheets. These dynamics result in significant modifications of the vertical transport rates, giving rise to negative diffusive fluxes of salinity and significant reduction of the total scalar transport, particularly of its convective part.

Shear effects on scalar transport in double diffusive convection

Marchioli C.;Zonta F.;Soldati A.
2020-01-01

Abstract

In this article, we examine the effect of shear on scalar transport in double diffusive convection (DDC). DDC results from the competing action of a stably stratified, rapidly diffusing scalar (temperature) and an unstably stratified, slowly diffusing scalar (salinity), which is characterized by fingering instabilities. We investigate, for the first time, the effect of shear on the diffusive and convective contributions to the total scalar transport flux within a confined fluid layer, examining also the associated fingering dynamics and flow structure. We base our analysis on fully resolved numerical simulations under the Oberbeck–Boussinesq condition. The problem has five governing parameters: The salinity Prandtl number, Prs (momentum-to-salinity diffusivity ratio); the salinity Rayleigh number, Ras (measure of the fluid instability due to salinity differences); the Lewis number, Le (thermal-to-salinity diffusivity ratio); the density ratio, K (measure of the effective flow stratification), and the shear rate, C. Simulations are performed at fixed Prs, Ras, Le, and K, while the effect of shear is accounted for by considering different values of C. Preliminary results show that shear tends to damp the growth of fingering instability, leading to highly anisotropic DDC dynamics associated with the formation of regular salinity sheets. These dynamics result in significant modifications of the vertical transport rates, giving rise to negative diffusive fluxes of salinity and significant reduction of the total scalar transport, particularly of its convective part.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1208041
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact