In this paper, we introduce crisp utility functions with range in the class of fuzzy numbers. These utility functions can be employed to prove a generalization of the classical result of Cantor using partially ordered sets as domain of the utility functions. In particular, for every partially ordered countable set, we prove that it can be represented by an order preserving function (utility).
Utility with fuzzy numbers
Prati N.
2022-01-01
Abstract
In this paper, we introduce crisp utility functions with range in the class of fuzzy numbers. These utility functions can be employed to prove a generalization of the classical result of Cantor using partially ordered sets as domain of the utility functions. In particular, for every partially ordered countable set, we prove that it can be represented by an order preserving function (utility).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0165011421002530-main.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
379.62 kB
Formato
Adobe PDF
|
379.62 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.