Let A⊆B be a ring extension and G be a set of A-submodules of B. We introduce a class of closure operations on G (which we call multiplicative operations on (A,B,G)) that generalizes the classes of star, semistar and semiprime operations. We study how the set Mult(A,B,G) of these closure operations varies when A, B or G vary, and how Mult(A,B,G) behaves under ring homomorphisms. As an application, we show how to reduce the study of star operations on analytically unramified one-dimensional Noetherian domains to the study of closures on finite extensions of Artinian rings.
Multiplicative closure operations on ring extensions
Spirito D.
2021-01-01
Abstract
Let A⊆B be a ring extension and G be a set of A-submodules of B. We introduce a class of closure operations on G (which we call multiplicative operations on (A,B,G)) that generalizes the classes of star, semistar and semiprime operations. We study how the set Mult(A,B,G) of these closure operations varies when A, B or G vary, and how Mult(A,B,G) behaves under ring homomorphisms. As an application, we show how to reduce the study of star operations on analytically unramified one-dimensional Noetherian domains to the study of closures on finite extensions of Artinian rings.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Multiplicative closure operations on ring extensions.pdf
non disponibili
Tipologia:
Documento in Pre-print
Licenza:
Non pubblico
Dimensione
500.59 kB
Formato
Adobe PDF
|
500.59 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.