The Golomb space ℕT is the set N of positive integers endowed with the topology T generated by the base consisting of arithmetic progressions {a + bn: n ≥ 0} with coprime a, b. We prove that the Golomb space ℕT is topologically rigid in the sense that its homeomorphism group is trivial. This resolves a problem posed by T. Banakh at Mathoverflow in 2017.
The Golomb space is topologically rigid
Spirito D.;
2021-01-01
Abstract
The Golomb space ℕT is the set N of positive integers endowed with the topology T generated by the base consisting of arithmetic progressions {a + bn: n ≥ 0} with coprime a, b. We prove that the Golomb space ℕT is topologically rigid in the sense that its homeomorphism group is trivial. This resolves a problem posed by T. Banakh at Mathoverflow in 2017.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
The Golomb space is topologically rigid.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
188.5 kB
Formato
Adobe PDF
|
188.5 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.